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Abstract
On the R

d the Dunkl operators
{
Dk, j

}d
j=1 are the differential-difference operators

associated with the reflection group Z
d
2 on R

d . In this paper, in the setting R
d we

find necessary and sufficient conditions for the boundedness of the fractional maximal
operator Mα,k on Orlicz spaces LΦ,k(R

d). As an application of this result we show
that b ∈ BMOk(R

d) if and only if the maximal commutator Mb,k is bounded on Orlicz
spaces LΦ,k(R

d).

Keywords Fractional maximal operator · Orlicz space · Dunkl operator ·
Commutator · BMO

Mathematics Subject Classification 42B20 · 42B25 · 42B35

1 Introduction

It is well known that maximal operators play an important role in harmonic anal-
ysis (see [1]). Harmonic analysis associated to the Dunkl transform and the Dunkl
differential-difference operator gives rise to convolutions with a relevant generalized
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translation. In the settingR
d theDunkl operators

{
Dk, j

}d
j=1,which are the differential-

difference operators introduced by Dunkl in [2]. These operators are very important
in pure mathematics and in physics. They provide useful tools in the study of special
functions with root systems.

Dunkl operators are differential reflection operators associated with finite reflection
groupswhich generalize the usual partial derivatives aswell as the invariant differential
operators of Riemannian symmetric spaces. They play an important role in harmonic
analysis and the study of special functions of several variables. Among other applica-
tions, Dunkl operators are employed in the description of quantum integrable models
of Calogero-Moser type. Also, there are stochastic processes associated with Dunkl
Laplacians which generalize Dyson’s Brownian motion model. The Dunkl fractional
maximal operator is of particular interest for harmonic analysis associated with root
systems. However, the structure of the Dunkl translation makes the study difficult
to which the heavy machinery of real analysis cannot be applied, such as covering
methods, weighted inequalities, etc.

The harmonic analysis of the Dunkl operator and Dunkl transform was developed
in [3–8]. The fractional maximal function, the fractional integral and related topics
associated with the Dunkl differential-difference operator have been research areas
for many mathematicians such as Abdelkefi and Sifi [9], Deleaval [6], Guliyev and
Mammadov [3,4,10], Mammadov [11], Kamoun [12], Mourou [13], Soltani [14,15],
Trimeche [16] and others.Moreover, the results on LΦ,k(R

d)-boundedness ofmaximal
operators associated with Dk were obtained in [10,17].

Norm inequalities for several classical operators of harmonic analysis have been
widely studied in the context of Orlicz spaces. It is well known that many of such
operators fail to have continuity properties when they act between certain Lebesgue
spaces and, in some situations, the Orlicz spaces appear as adequate substitutes. For
example, the Hardy-Littlewood maximal operator is bounded on L p for 1 < p < ∞,
but not on L1, but using Orlicz spaces, we can investigate the boundedness of the
maximal operator near p = 1, see [18,19] for more precise statements.

Let T be the classical singular integral operator, the commutator [b, T ] generated
by T and a suitable function b is given by

[b, T ] f := b T ( f ) − T (b f ). (1.1)

A well-known result due to Coifman, Rochberg and Weiss [20] (see also [21]) states
that b ∈ BMO(Rn) if and only if the commutator [b, T ] is bounded on L p(R

n) for
1 < p < ∞.

It is well known that fractional maximal operators play an important role in har-
monic analysis (see [1]). Harmonic analysis associated to the Dunkl transform and the
Dunkl differential-difference operator gives rise to convolutions with a relevant gen-
eralized translation. In this paper, in the framework of this analysis in the setting R

d ,
we study the boundedness of the fractional maximal commutator Mb,α,k and the com-
mutator of the fractional maximal operator, [b, Mα,k], on the Orlicz space LΦ,k(R

d),
when b belongs to the space BMOk(R

d), by which some new characterizations of the
space BMOk(R

d) are given.
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By A � B we mean that A ≤ CB with some positive constant C independent of
appropriate quantities. If A � B and B � A, we write A ≈ B and say that A and B
are equivalent.

2 Preliminaries in the Dunkl setting on R
d

We consider R
d with the Euclidean scalar product 〈 · , · 〉 and its associated norm

‖x‖ := √〈x, x〉 for any x ∈ R
d . For any v ∈ R

d\{0} let σv be the reflection in the
hyperplane Hv ⊂ R

d orthogonal to v:

σv(x) := x −
(
2〈x, v〉
‖v‖2

)
v, ∀ x ∈ R

d .

A finite set R ⊂ R
d \ {0} is called a root system, if σvR = R for all v ∈ R. We assume

that it is normalized by ‖v‖2 = 2 for all v ∈ R.
Thefinite groupG generated by the reflections

{
σv

}
v∈R is called the reflection group

(or the Coxeter-Weyl group) of the root system. Then, we fix a G-invariant function
k : R → C called the multiplicity function of the root system and we consider the
family of commuting operators Dk, j defined for any f ∈ C1(Rd) and any x ∈ R

d by

Dk, j f (x) := ∂

∂x j
f (x) +

∑

v∈R+
kv

f (x) − f (σv(x))

〈x, v〉 〈v, e j 〉, 1 ≤ j ≤ d,

where C1(Rd) denotes the set of all functions f : R
d → R such that

{ ∂ f
∂x j

}d
j=1 are

continuous on R
d ,

{
ei

}d
i=1 are the standard unit vectors of R

d and R+ is a positive
subsystem. These operators, defined by Dunkl [2], are independent of the choice of
the positive subsystem R+ and are of fundamental importance in various areas of
mathematics and mathematical physics.

Throughout this paper, we assume that kv ≥ 0 for all v ∈ R and we denote by hk
the weight function on R

d given by

hk(x) :=
∏

v∈R+
|〈x, v〉|kv , ∀ x ∈ R

d .

The function hk isG-invariant and homogeneous of degree γk , where γk := ∑
v∈R+ kv .

Closely related to them is the so-called intertwining operator Vκ (the subscript
means that the operator depends on the parameters κi , except in the rank-one case
where the subscript is then a single parameter). The intertwining operator Vκ is the
unique linear isomorphism of ⊕n≥0Pn such that

V (Pn) = Pn, Vk(1) = 1, DiVk = Vk
∂

∂xi
for any i ∈ {1, ..., d}
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with Pn being the subspace of homogeneous polynomials of degree n in d variables.
The explicit formula of Vk is not known in general (see [22]). For the group G := Z

d
2

and hk(x) := ∏d
i=1 |xi |ki for all x ∈ R

d , it is an integral transform

Vk f (x) := bk

∫

[−1,1]d
f
(
x1t1, · · · , xd td

) d∏

i=1

(1 + ti )
(
1 − t2i

)ki−1
dt, ∀ x ∈ R

d .

(2.1)

Let B(x, r) := {y ∈ R
d : |x − y| < r} denote the ball in R

d that centered in x ∈ R
d

and having radius r > 0. Then having

|B(0, r)|k =
∫

B(0,r)
h2k(x)dx =

(
ak

d + 2γk

)
rd+2γk ,

where

ak :=
(∫

Sd−1
h2k(x) dσ(x)

)−1

,

Sd−1 is the unit sphere on R
d with the normalized surface measure dσ .

The fractional maximal operator Mα,k , 0 < α < d+2γk associated with the Dunkl
operator on R

d is given by (see [6])

Mk f (x) := sup
r>0

(
|B(x, r)|k

)−1+ α
d+2γk

∫

B(x,r)
| f (y)| h2k(y)dy, x ∈ R

d

and the fractional maximal commutator Mb,α,k , 0 < α < d + 2γk associated with
the Dunkl operator on R

d and with a locally integrable function b ∈ L loc
1,k(R

d) ≡
L loc
1 (Rd , h2k(x)dx) is defined by (see [23])

Mb,α,k f (x) := sup
r>0

(
|B(x, r)|k

)−1+ α
d+2γk

∫

B(x,r)
|b(x) − b(y)| | f (y)| h2k(y)dy, ∀ x ∈ R

d .

If α = 0, then Mk ≡ Mk,0 is the maximal operator associated by Dunkl operator
on R

d and Mb,k ≡ Mb,k,0 is the maximal commutator operator associated by Dunkl
operator on R

d .
On the other hand, similar to (1.1), we can define the (nonlinear) commutator of

the fractional maximal operator Mα,k with a locally integrable function b by

[b, Mα,k]( f )(x) f = b(x)Mα,k( f )(x) − Mα,k(b f )(x).
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For more details about the operators Mb,k and [b, Mk], we refer to [10] and references
therein.

For a function b defined on R, we let, for any x ∈ R
d ,

b−(x) :=
{
0 , if b(x) ≥ 0,

|b(x)|, if b(x) < 0

and b+(x) := |b(x)| − b−(x). Obviously, for any x ∈ R, b+(x) − b−(x) = b(x).
The following relations between [b, Mα,k] and Mb,α,k are valid :
Let b be any non-negative locally integrable function. Then

|[b, Mα,k] f (x)| ≤ Mb,α,k( f )(x), ∀ x ∈ R
d

holds for all f ∈ L loc
1 (Rd , h2k(x)dx).

If b is any locally integrable function on R, then

|[b, Mα,k] f (x)| ≤ Mb,α,k( f )(x) + 2b−(x)Mα,k f (x), ∀ x ∈ R
d (2.2)

holds for all f ∈ L loc
1,k(R

d) (see, for example, [24]).

2.1 Orlicz spaces in the Dunkl setting onR
d

Recall that Orlicz space was first introduced by Orlicz in [25,26] as a generalizations
of Lebesgue spaces L p. Since then this space has been one of important functional
frames in the mathematical analysis, and especially in real and harmonic analysis.
Orlicz space is also an appropriate substitute for L1 space when the space L1 does not
work.

To introduce the notion of Orlicz spaces in the Dunkl setting on R
d , we first recall

the definition of Young functions.

Definition 1 A function Φ : [0,∞) → [0,∞] is called a Young function if Φ is
convex, left-continuous, lim

r→+0
Φ(r) = Φ(0) = 0 and lim

r→∞ Φ(r) = ∞.

From the convexity and Φ(0) = 0 it follows that any Young function is increasing. If
there exists s ∈ (0,∞) such that Φ(s) = ∞, then Φ(r) = ∞ for r ≥ s. The set of
Young functions such that

0 < Φ(r) < ∞ for 0 < r < ∞

is denoted by Y . If Φ ∈ Y , then Φ is absolutely continuous on every closed interval
in [0,∞) and bijective from [0,∞) to itself.

For a Young function Φ and 0 ≤ s ≤ ∞, let

Φ−1(s) := inf{r ≥ 0 : Φ(r) > s}.
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If Φ ∈ Y , then Φ−1 is the usual inverse function of Φ. It is well known that

r ≤ Φ−1(r)Φ̃−1(r) ≤ 2r for any r ≥ 0, (2.3)

where Φ̃(r) is defined by

Φ̃(r) :=
{
sup{rs − Φ(s) : s ∈ [0,∞)}, r ∈ [0,∞)

∞, r = ∞.

A Young function Φ is said to satisfy the Δ2-condition, denoted also as Φ ∈ Δ2, if

Φ(2r) ≤ C Φ(r), r > 0

for some C > 1. If Φ ∈ Δ2, then Φ ∈ Y . A Young function Φ is said to satisfy the
∇2-condition, denoted also by Φ ∈ ∇2, if

Φ(r) ≤ 1

2C
Φ(Cr), r ≥ 0

for some C > 1. In what follows, for any subset E of R, we use χE to denote its
characteristic function.

Definition 2 (Orlicz space) For a Young function Φ, the set

LΦ,k(R
d )≡ LΦ(Rd , h2k(x)dx)=

{
f ∈ L loc

1,k(R
d ) :

∫

Rd
Φ(λ| f (x)|) h2k(x)dx < ∞ for some λ > 0

}

is called the Orlicz space. If Φ(r) := r p for all r ∈ [0,∞), 1 ≤ p < ∞, then
LΦ,k(R

d) = L p,k(R
d) ≡ L p(R

d , h2k(x)dx). If Φ(r) := 0 for all r ∈ [0, 1] and
Φ(r) := ∞ for all r ∈ (1,∞), then LΦ,k(R

d) = L∞,k(R
d). The space L loc

Φ,k(R
d) is

defined as the set of all functions f such that f χB ∈ LΦ,k(R
d) for all balls B ⊂ R

d .

LΦ,k(R
d) is a Banach space with respect to the norm

‖ f ‖LΦ,k := inf

{
λ > 0 :

∫

Rd
Φ

( | f (x)|
λ

)
h2k(x)dx ≤ 1

}
.

For a measurable function f on R
d and t > 0, let

m( f , t)k := |{x ∈ R
d : | f (x)| > t}|k .

Definition 3 The weak Orlicz space

W LΦ,k(R
d) :=

{
f ∈ L loc

1 (Rd , h2k(x)dx) : ‖ f ‖WLΦ,k < ∞
}
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is defined by the norm

‖ f ‖WLΦ,k := inf
{
λ > 0 : sup

t>0
Φ(t)m

( f

λ
, t

)

k
≤ 1

}
.

We note that ‖ f ‖WLΦ,k ≤ ‖ f ‖LΦ,k ,

sup
t>0

Φ(t)m( f , t)k = sup
t>0

t m( f , Φ−1(t))k = sup
t>0

t m(Φ(| f |), t)k

and

∫

Rd
Φ

( | f (x)|
‖ f ‖LΦ,k

)
h2k(x)dx ≤ 1, sup

t>0
Φ(t)m

(
f

‖ f ‖WLΦ,k

, t

)

k

≤ 1. (2.4)

The following analogue of theHölder inequality iswell known (see, for example, [27]).

Theorem 1 Let the functions f and g be measurable on R
d . For a Young function Φ

and its complementary function Φ̃, the following inequality is valid

∫

Rd
| f (x)g(x)| h2k(x)dx ≤ 2‖ f ‖LΦ,k‖g‖LΦ̃,k

.

By elementary calculations we have the following property.

Lemma 1 Let Φ be a Young function and B be a ball in R
d . Then

‖χB‖LΦ,k = ‖χB‖WLΦ = 1

Φ−1
(
|B|−1

k

) .

By Theorem 1, Lemma 1 and (2.3) we obtain the following estimate.

Lemma 2 For a Young functionΦ and for the ball B the following inequality is valid:

∫

B
| f (y)| h2k(x)dx ≤ 2|B|k Φ−1

(
|B|−1

k

)
‖ f χB‖LΦ,k .

We begin with the boundedness of the maximal operator Mk on Orlicz spaces
LΦ,k(R

d), which were proved in [10,17], see also [28].

Theorem 2 [10,17] Let Φ be a Young function.

(i) The operator Mk is bounded from LΦ,k(R
d) to W LΦ,k(R

d), and the inequality

‖Mk f ‖WLΦ,k ≤ C0‖ f ‖LΦ,k (2.5)

holds with constant C0 independent of f .
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(ii) The operator Mk is bounded on LΦ,k(R
d), and the inequality

‖Mk f ‖LΦ,k ≤ C0‖ f ‖LΦ,k (2.6)

holds with constant C0 independent of f if and only if Φ ∈ ∇2.

The following theorems were proved in [10,17].

Theorem 3 [10] Let b ∈ BMOk(R
d) and Φ ∈ Y . Then the condition Φ ∈ ∇2 is

necessary and sufficient for the boundedness of Mb,k on LΦ,k(R
d).

Theorem 4 [10] Let Φ be a Young function with Φ ∈ ∇2. Then the condition b ∈
BMOk(R

d) is necessary and sufficient for the boundedness of Mb,k on LΦ,k(R
d).

From (2.2) and Theorem 4 we deduce the following conclusion.

Corollary 1 Let Φ be a Young function with Φ ∈ ∇2. Then the conditions b+ ∈
BMOk(R

d) and b− ∈ L∞,k(R
d) are sufficient for the boundedness of [b, Mk] on

LΦ,k(R
d).

3 Fractional maximal operatorM˛,k in Orlicz spaces L8,k(R
d)

In this section, we shall give a necessary and sufficient condition for the boundedness
of Mα,k on Orlicz spaces LΦ,k(R

d) and weak Orlicz spaces WLΦ,k(R
d).

In order to prove our main theorem, we also need the following lemma.

Lemma 3 If B0 := B(x0, r0), then

|B0|
α

d+2γk
k ≤ Mα,kχB0(x)

for every x ∈ B0.

Proof For x ∈ B0, we get

Mα,kχB0(x) = sup
B�x

|B0|
−1+ α

d+2γk
k |B ∩ B0|k

≥ |B0|
−1+ α

d+2γk
k |B0 ∩ B0|k = |B0|

α
d+2γk
k .

��
The following result completely characterizes the boundedness of Mα,k on Orlicz

spaces LΦ,k(R
d).

Theorem 5 Let 0 < α < d+2γk ,Φ,Ψ be Young functions andΦ ∈ Y . The condition

r
− α

d+2γk Φ−1(r) ≤ C Ψ −1(r) (3.1)
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for all r > 0, where C > 0 does not depend on r, is necessary and sufficient for
the boundedness of Mα,k from LΦ,k(R

d) to W LΨ ,k(R
d). Moreover, if Φ ∈ ∇2, the

condition (3.1) is necessary and sufficient for the boundedness of Mα,k from LΦ,k(R
d)

to LΨ ,k(R
d).

Proof For arbitrary ball B = B(x, r) we represent f as

f = f1 + f2, f1(y) = f (y)χ2B(y), f2(y) = f (y)χ �
(2B)

(y), r > 0,

and have

Mα,k f (x) = Mα,k f1(x) + Mα,k f2(x).

Let y be an arbitrary point in B. If B(y, t) ∩ �
(B(x, 2r)) �= ∅, then t > r . Indeed, if

z ∈ B(y, t) ∩ �
(B(x, 2r)), then t > |y − z| ≥ |x − z| − |x − y| > 2r − r = r .

On the other hand, B(y, t) ∩ �
(B(x, 2r)) ⊂ B(x, 2t). Indeed, if z ∈ B(y, t) ∩

�
(B(x, 2r)), then we get |x − z| ≤ |y − z| + |x − y| < t + r < 2t .
Hence

Mα,k f2(y) � sup
t>0

1

|B(y, t)|1−
α

d+2γk
k

∫

B(y,t)∩ �
(B(x,2r))

| f (z)| h2k(z)dz

� sup
t>r

1

|B(x, 2t)|1−
α

d+2γk
k

∫

B(x,2t)
| f (z)| h2k(z)dz

= sup
t>2r

1

|B(x, r)|1−
α

d+2γk
k

∫

B(x,t)
| f (z)| h2k(z)dz

� sup
r<t<∞

tα Φ−1(|B(x, r)|−1
k ) ‖ f ‖LΦ,k (B(x,t))

� ‖ f ‖LΦ,k sup
r<t<∞

tα Φ−1(|B(x, r)|−1
k ).

Consequently from Hedberg’s trick, see [29], and the last inequality, we have

Mα,k f (y) � rαMk f (y) + ‖ f ‖LΦ,k sup
r<t<∞

tα Φ−1(t−d−2γk ).

Thus, by (3.1) we obtain

Mα,k f (x) � Mk f (x)
Ψ −1(r−d−2γk )

Φ−1(r−d−2γk )
+ ‖ f ‖LΦ,k Ψ −1(r−d−2γk ).
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Choose r > 0 so that Φ−1(r−d−2γk ) = Mk f (x)
C0‖ f ‖LΦ,k

. Then

Ψ −1(r−d−2γk )

Φ−1(r−d−2γk )
=

(Ψ −1 ◦ Φ)(
Mk f (x)

C0‖ f ‖LΦ,k
)

Mk f (x)
C0‖ f ‖LΦ,k

.

Therefore, we get

Mα,k f (x) ≤ C1‖ f ‖LΦ,k (Ψ
−1 ◦ Φ)

( Mk f (x)

C0‖ f ‖LΦ,k

)
.

Let C0 be as in (2.5). Then by Theorem 2, we have

sup
r>0

Ψ (r)m

(
B,

Mα,k f (x)

C1‖ f ‖LΦ,k

, r

)

k

= sup
r>0

r m

(
B, Ψ

(
Mα,k f (x)

C1‖ f ‖LΦ,k

)
, r

)

k

≤ sup
r>0

r m

(
B, Φ

(
Mk f (x)

C0‖ f ‖LΦ,k

)
, r

)

k

≤ sup
r>0

Φ(r)m

(
M f (x)

‖M f ‖WLΦ,k

, r

)

k

≤ 1,

i.e.
‖Mα,k f ‖WLΨ ,k (B) � ‖ f ‖LΦ,k . (3.2)

By taking supremum over B in (3.2), we get

‖Mα,k f ‖WLΨ ,k � ‖ f ‖LΦ,k ,

since the constants in (3.2) don’t depend on x and r .
Let C0 be as in (2.6). Since Φ ∈ ∇2, by Theorem 2, we have

∫

B
Ψ

(
Mα,k f (x)

C1‖ f ‖LΦ,k

)
h2k(x)dx ≤

∫

B
Φ

(
Mk f (x)

C0‖ f ‖LΦ,k

)
h2k(x)dx

≤
∫

Rn
Φ

(
M f (x)

‖Mk f ‖LΦ,k

)
dx ≤ 1,

i.e.
‖Mα,k f ‖LΨ ,k(B) � ‖ f ‖LΦ,k . (3.3)

By taking supremum over B in (3.3), we get

‖Mα,k f ‖LΨ ,k � ‖ f ‖LΦ,k ,

since the constants in (3.3) don’t depend on x and r .
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We shall now prove the necessity. Let B0 = B(x0, r0) and x ∈ B0. By Lemma 3,
we have rα

0 ≤ CMα,kχB0(x). Therefore, by Lemma 1, we have

rα
0 � Ψ −1(|B0|−1

k )‖Mα,kχB0‖WLΨ ,k (B0) � Ψ −1(|B0|−1
k )‖Mα,kχB0‖WLΨ ,k

� Ψ −1(|B0|−1
k )‖χB0‖LΦ,k � Ψ −1(r−d−2γk

0 )

Φ−1(r−d−2γk
0 )

and

rα
0 � Ψ −1(|B0|−1

k )‖Mα,kχB0‖LΨ ,k (B0) � Ψ −1(|B0|−1
k )‖Mα,kχB0‖LΨ ,k

� Ψ −1(|B0|−1
k )‖χB0‖LΦ,k � Ψ −1(r−d−2γk

0 )

Φ−1(r−d−2γk
0 )

.

Since this is true for every r0 > 0, we are done. ��
We recover the following well known result by taking Φ(t) = t p at Theorem 5.

Corollary 2 Let 0 < α < d + 2γk and 1 ≤ p < (d + 2γk)/α. Then the condition
1/q = 1/p − α/(d + 2γk) is necessary and sufficient for the boundedness of Mα,k

from L p,k(R
d) to W Lq,k(R

d) and for p > 1 from L p,k(R
d) to Lq,k(R

d).

4 Fractional maximal commutatorMb,˛,k in Orlicz spaces L8,k(R
d)

In this section we investigate the boundedness of the fractional maximal commutator
Mb,α,k and the commutator of the fractional maximal operator, [b, Mα,k], in Orlicz
spaces LΦ,k(R

d).
We recall the definition of the space BMOk(R

d).

Definition 4 Suppose that b ∈ L loc
1,k(R

d), let

‖b‖BMOk := sup
x∈R,r>0

1

|B(x, r)|k
∫

B(x,r)
|b(y) − bB(x,r)(x)| h2k(y)dy,

where

bB(x,r) := 1

|B(x, r)|k
∫

B(x,r)
b(y) h2k(y)dy.

Define

BMOk(R
d) := {b ∈ L loc

1,k(R
d) : ‖b‖BMOk < ∞}.

Modulo constants, the space BMOk(R
d) is a Banach space with respect to the

norm ‖ · ‖BMOk (R
d ).
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We will need the following properties of BMO-functions (see [21]):

‖b‖BMOk ≈ sup
x∈Rd ,r>0

(
1

|B(x, r)|k
∫

B(x,r)
|b(y) − bB(x,r)|p h2k(y)dy

) 1
p

, (4.1)

where 1 ≤ p < ∞ and the positive equivalence constants are independent of b, and

∣∣bB(x,r) − bB(x,t)
∣∣ ≤ C‖b‖BMOk ln

t

r
for any 0 < 2r < t, (4.2)

where the positive constant C does not depend on b, x , r and t .
Next, we recall the notion of weights. Let w be a locally integrable and positive

function on (Rd , h2k(x)dx). The function w is called aMuckenhoupt A1,k(R
d) weight

if there exists a positive constant C such that for any ball B

1

|B|k
∫

B
w(x) h2k(x)dx ≤ C ess inf

x∈B w(x).

Lemma 4 [28, Chapter 1] Letω ∈ A1,k(R
d), then the reverse Hölder inequality holds,

that is, there exist q > 1 and a positive constant C such that

(
1

|B|k
∫

B
w(x)q h2k(x)dx

) 1
q ≤ C

|B|k
∫

B
w(x) h2k(x)dx

for all balls B.

Lemma 5 [10] Let Φ be a Young function with Φ ∈ Δ2, B be a ball in R
d and

f ∈ LΦ,k(B). Then we have

1

2|B|k
∫

B
| f (x)| h2k(x)dx ≤ Φ−1(|B|−1

k

) ‖ f ‖LΦ,k

≤ C

(
1

|B|k
∫

B
| f (x)|p h2k(x)dx

) 1
p

for some 1 < p < ∞, where the positive constant C does not depend on f and B.

We have the following result from (4.1) and Lemma 5.

Lemma 6 Let b ∈ BMOk(R
d) and Φ be a Young function with Φ ∈ Δ2, then

‖b‖BMOk ≈ sup
x∈Rd ,r>0

Φ−1(|B(x, r)|−1
k

) ∥∥b(·) − bB(x,r)
∥∥
LΦ,k (B(x,r)) , (4.3)

where the positive equivalence constants are independent of b.

By Theorem 2 and Theorem 1.13 in [24] we obtain the following theorem.
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Theorem 6 [10] Let b ∈ BMOk(R
d) and and Φ be a Young function. Then the

conditionΦ ∈ ∇2 is necessary and sufficient for the boundedness of Mb,k on LΦ,k(R
d),

i.e., the inequality
‖Mb,k f ‖LΦ,k ≤ C0‖b‖BMOk ‖ f ‖LΦ,k (4.4)

holds with constant C0 independent of f .

The following lemma is the analogue of the Hedberg’s trick for the commutator of
fractional integral (see [29]).

Lemma 7 If 0 < α < d + 2γk and f , b ∈ L loc
1,k(R

d), then for all x ∈ R
d and r > 0

we get ∫

B(x,r)

| f (y)|
|x − y|d+2γk−α

|b(x) − b(y)| h2k(y)dy � rαMb,k f (x).

Proof
∫

B(x,r)

| f (y)|
|x − y|d+2γk−α

|b(x) − b(y)| h2k(y)dy

=
∞∑

j=0

∫

2− j−1r≤|x−y|<2− j r

| f (y)|
|x − y|d+2γk−α

|b(x) − b(y)| h2k(y)dy

�
∞∑

j=0

(2− j r)α(2− j r)−1
∫

|x−y|<2− j r
| f (y)||b(x) − b(y)| h2k(y)dy

� rαMb,k f (x).

��
For proving our main results, we need the following estimate.

Lemma 8 If b ∈ L loc
1,k(R

d) and B0 := B(x0, r0), then

rα
0 |b(x) − bB0 | ≤ CMb,α,kχB0(x) for every x ∈ B0.

Proof It is well known that

Mb,ν,α f (x) ≤ 2d+2γk−αMb,α,k f (x), (4.5)

where Mb,ν,α( f )(x) = sup
B�x

|B|−d−2γk+α

k

∫
B |b(x) − b(y)|| f (y)| h2k(y)dy.

Now let x ∈ B0. By using (4.5), we get

Mb,α,kχB0(x) ≥ CMb,ν,α f (x)

= C sup
B�x

|B|−d−2γk+α

k

∫

B
|b(x) − b(y)|χB0 h

2
k(y)dy

= C sup
B�x

|B|−d−2γk+α

k

∫

B∩B0
|b(x) − b(y)| h2k(y)dy
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≥ C |B0|−d−2γk+α

k

∫

B0∩B0
|b(x) − b(y)| h2k(y)dy

≥ C |B0|−d−2γk+α

k

∣∣
∫

B0
(b(x) − b(y)) h2k(y)dy

∣∣

= Crα
0 |b(x) − bB0 |.

��
The following theorem gives necessary and sufficient conditions for the bounded-

ness of the operator Mb,α,k from LΦ,k(R
d) to LΨ ,k(R

d).

Theorem 7 Let 0 < α < d + 2γk , b ∈ BMOk(R
d) and Φ,Ψ be Young functions and

Φ ∈ Y .

1. If Φ ∈ ∇2 and Ψ ∈ Δ2, then the condition

rαΦ−1(r−d−2γk
)+ sup

r<t<∞

(
1+ln

t

r

)
Φ−1(t−d−2γk

)
tα ≤ CΨ −1(r−d−2γk

)
(4.6)

for all r > 0, where C > 0 does not depend on r, is sufficient for the boundedness
of Mb,α,k from LΦ,k(R

d) to LΨ (Rd , h2k(x)dx).
2. If Ψ ∈ Δ2, then the condition (3.1) is necessary for the boundedness of Mb,α,k

from LΦ,k(R
d) to LΨ ,k(R

d).
3. Let Φ ∈ ∇2 and Ψ ∈ Δ2. If the condition

sup
r<t<∞

(
1 + ln

t

r

)
Φ−1(t−d−2γk

)
tα ≤ CrαΦ−1(r−d−2γk

)
(4.7)

holds for all r > 0, where C > 0 does not depend on r, then the condition (3.1) is
necessary and sufficient for the boundedness of Mb,α,k from LΦ,k(R

d) to LΨ ,k(R
d).

Proof 1. For arbitrary x0 ∈ R, set B = B(x0, r) for the ball centered at x0 and of
radius r . Write f = f1 + f2 with f1 = f χ2B and f2 = f χ�

(2B)

.

Let x be an arbitrary point in B. If B(x, t) ∩ { �
(2B)} �= ∅, then t > r . Indeed, if

y ∈ B(x, t) ∩ { �
(2B)}, then t > |x − y| ≥ |x0 − y| − |x0 − x | > 2r − r = r .

On the other hand, B(x, t)∩{ �
(2B)} ⊂ B(x0, 2t). Indeed, if y ∈ B(x, t)∩{ �

(2B)},
then we get |x0 − y| ≤ |x − y| + |x0 − x | < t + r < 2t .

Hence

Mb,α,k( f2)(x) = sup
t>0

1

|B(x, t)|1−
α

d+2γk
k

∫

B(x,t)∩ �
(2B)

|b(y) − b(x)|| f (y)| h2k(y)dy

≤ 2n−α sup
t>r

1

|B(x0, 2t)|
1− α

d+2γk
k

∫

B(x0,2t)
|b(y) − b(x)|| f (y)| h2k(y)dy

= 2n−α sup
t>2r

1

|B(x0, t)|
1− α

d+2γk
k

∫

B(x0,t)
|b(y) − b(x)|| f (y)| h2k(y)dy.
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Therefore, for all x ∈ B we have

Mb,α,k( f2)(x) � sup
t>2r

tα−d−2γk

∫

B(x0,t)
|b(y) − b(x)|| f (y)| h2k(y)dy

� sup
t>2r

tα−d−2γk

∫

B(x0,t)
|b(y) − bB(x0,t)|| f (y)| h2k(y)dy

+ sup
t>2r

tα−d−2γk

∫

B(x0,t)
|bB(x0,t) − bB || f (y)| h2k(y)dy

+ sup
t>2r

tα−d−2γk

∫

B(x0,t)
|bB − b(x)|| f (y)| h2k(y)dy

= J1 + J2 + J3.

Applying Hölder’s inequality, by (2.3), (4.2), (4.3) and Lemma 2 we get

J1 + J2 � sup
t>2r

tα−d−2γk

∫

B(x0,t)
|b(y) − bB(x0,t)|| f (y)| h2k(y)dy

+ sup
t>2r

tα−d−2γk |bB(x0,r) − bB(x0,t)|
∫

B(x0,t)
| f (y)| h2k(y)dy

� sup
t>2r

tα−d−2γk
∥∥b(·) − bB(x0,t)

∥∥
LΦ̃ (B(x0,t))

‖ f ‖LΦ,k (B(x0,t))

+ sup
t>2r

tα−d−2γk |bB(x0,r) − bB(x0,t)|td+2γkΦ−1(|B(x0, t)|−1
k

)‖ f ‖LΦ,k (B(x0,t))

� ‖b‖BMOk sup
t>2r

Φ−1(|B(x0, t)|−1
k ) tα

(
1 + ln

t

r

)
‖ f ‖LΦ,k (B(x0,t))

� ‖b‖BMOk ‖ f ‖LΦ,k sup
t>2r

(
1 + ln

t

r

)
tα Φ−1(t−d−2γk ).

A geometric observation shows 2B ⊂ B(x, 3r) for all x ∈ B. Using Lemma 7, we
get

J0(x) := Mb,α,k( f1)(x) � |b, Iα|(| f1|)(x) =
∫

2B

|b(y) − b(x)|
|x − y|d+2γk−α

| f (y)| h2k(y)dy

�
∫

B(x,3r)

|b(y) − b(x)|
|x − y|d+2γk−α

| f (y)| h2k(y)dy � rαMb,k f (x).

Consequently for all x ∈ B we get

J0(x) + J1 + J2 � ‖b‖BMOkr
αMb,k f (x)

+ ‖b‖BMOk‖ f ‖LΦ,k sup
t>2r

(
1 + ln

t

r

)
tαΦ−1(t−d−2γk ).

Thus, by (4.6) we obtain

J0(x) + J1 + J2 � ‖b‖BMOk

(
Mb,k f (x)

Ψ −1(r−d−2γk )

Φ−1(r−d−2γk )
+ Ψ −1(r−d−2γk )‖ f ‖LΦ,k

)
.
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Choose r > 0 so that Φ−1(r−d−2γk ) = Mb,k f (x)
C0‖b‖BMOk ‖ f ‖LΦ,k

. Then

Ψ −1(r−d−2γk )

Φ−1(r−d−2γk )
=

(Ψ −1 ◦ Φ)
( Mb,k f (x)
C0‖b‖BMOk ‖ f ‖LΦ,k

)

Mb,k f (x)
C0‖b‖BMOk ‖ f ‖LΦ,k

.

Therefore, we get

J0(x) + J1 + J2 ≤ C1‖b‖BMOk‖ f ‖LΦ,k (Ψ
−1 ◦ Φ)

(
Mb,k f (x)

C0‖b‖BMOk‖ f ‖LΦ,k

)
.

Let C0 be as in (4.4). Consequently by Theorem 6 and (2.4) we have

∫

B
Ψ

(
J0(x) + J1 + J2

C1‖b‖BMOk‖ f ‖LΦ,k

)
h2k(x)dx ≤

∫

B
Φ

(
Mb,k f (x)

C0‖b‖BMOk‖ f ‖LΦ,k

)
h2k(x)dx

≤
∫

Rn
Φ

(
Mb,k f (x)

‖Mb,k f ‖LΦ,k

)
h2k(x)dx ≤ 1,

i.e.
‖J0(·) + J1 + J2‖LΨ ,k (B) � ‖b‖BMOk‖ f ‖LΦ,k . (4.8)

By (4.3), (2) and condition (4.6), we also get

‖J3‖LΨ ,k (B) =
∥∥∥∥∥∥
sup
t>2r

1

|B(x0, t)|
1− α

d+2γk
k

∫

B(x0,t)
|b(·) − bB || f (y)| h2k(y)dy

∥∥∥∥∥∥
LΨ ,k (B)

≈ ‖b(·) − bB‖LΨ ,k (B) sup
t>2r

tα−d−2γk

∫

B(x0,t)
| f (y)| h2k(y)dy

� ‖b‖BMOk

Ψ −1
(|B|−1

k

) sup
t>2r

Φ−1(|B(x0, t)|−1
k )tα‖ f ‖LΦ,k (B(x0,t))

� ‖b‖BMOk

Ψ −1
(|B|−1

k

)‖ f ‖LΦ,k sup
t>2r

tαΦ−1(|B(x0, t)|−1
k )

� ‖b‖BMOk ‖ f ‖LΦ,k .

Consequently, we have

‖J3‖LΨ ,k (B) � ‖b‖BMOk ‖ f ‖LΦ,k . (4.9)

Combining (4.8) and (4.9), we get

‖Mb,α,k f ‖LΨ ,k (B) � ‖b‖BMOk‖ f ‖LΦ,k . (4.10)
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By taking supremum over B in (4.10), we get

‖Mb,α,k f ‖LΨ ,k � ‖b‖BMOk‖ f ‖LΦ,k ,

since the constants in (4.10) don’t depend on x0 and r .
2. We shall now prove the second part. Let B0 = B(x0, r0) and x ∈ B0. By

Lemma 8, we have rα
0 |b(x) − bB0 | ≤ CMb,α,kχB0(x). Therefore, by Lemmas 1 and 6

rα
0 �

‖Mb,α,kχB0‖LΨ ,k (B0)

‖b(·) − bB0‖LΨ ,k (B0)
� Ψ −1(|B0|−1

k )‖Mb,α,kχB0‖LΨ ,k (B0)

� Ψ −1(|B0|−1
k )‖Mb,α,kχB0‖LΨ ,k � Ψ −1(|B0|−1

k )‖χB0‖LΦ,k � Ψ −1(r−d−2γk
0 )

Φ−1(r−d−2γk
0 )

.

Since this is true for every r0 > 0, we are done.
3. The third statement of the theorem follows from the first and second parts of the

theorem. ��
If we take Φ(t) = t p and Ψ (t) = tq in Theorem 7 we get the following corollary.

Corollary 3 Let 1 < p < ∞, 0 < α < (d + 2γk)/p and b ∈ BMOk(R
d). Then

Mb,α,k is bounded from L p,k(R
d) to Lq,k(R

d) if and only if 1
q = 1

p − α
d+2γk

.

By (2.2) and Theorems 7 and 5 we get the following corollary.

Corollary 4 Let 0 < α < d + 2γk , b ∈ BMOk(R
d), b− ∈ L∞(Rd , h2k(x)dx) and

Φ,Ψ be Young functions with Φ ∈ ∇2 ∩ Y and Ψ ∈ Δ2. Let also the condition (4.6)
is satisfied. Then the operator [b, Mα,k]is bounded from LΦ,k(R

d) to LΨ ,k(R
d).

The following theorem is valid.

Theorem 8 Let 0 < α < d + 2γk , b ∈ L loc
1,k(R

d) and Φ,Ψ be Young functions with
Φ ∈ Y .

1. If Φ ∈ ∇2, Ψ ∈ Δ2 and the condition (4.6) holds, then the condition
b ∈ BMOk(R

d) is sufficient for the boundedness of Mb,α,k from LΦ,k(R
d) to

LΨ ,k(R
d).

2. If Ψ −1(t) � Φ−1(t)t−α/(d+2γk ), then the condition b ∈ BMOk(R
d) is necessary

for the boundedness of Mb,α,k from LΦ,k(R
d) to LΨ ,k(R

d).
3. If Φ ∈ ∇2, Ψ ∈ Δ2, Ψ −1(t) ≈ Φ−1(t)t−α/(d+2γk) and the condition (4.7) holds,

then the condition b ∈ BMOk(R
d) is necessary and sufficient for the boundedness

of Mb,α,k from LΦ,k(R
d) to LΨ ,k(R

d).

Proof

1. The first statement of the theorem follows from the first part of the Theorem 7.
2. We shall nowprove the secondpart. Suppose thatMb,α,k is bounded from LΦ,k(R

d)

to LΨ ,k(R
d). Choose any ball B = B(x, r) in R

d , by (2.3)
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1

|B|k
∫

B
|b(y) − bB | h2k(y)dy

= 1

|B|k
∫

B

∣∣∣
1

|B|k
∫

B
(b(y) − b(z)) h2k(z)dz

∣∣∣ h2k(y)dy

≤ 1

|B|2k

∫

B

∫

B
|b(y) − b(z)| h2k(z)dz h2k(y)dy

= 1

|B|1+
α

d+2γk
k

∫

B

1

|B|1−
α

d+2γk
k

∫

B
|b(y) − b(z)|χB (z) h2k(z)dz h

2
k(y)dy

≤ 1

|B|1+
α

d+2γk
k

∫

B
Mb,α,k

(
χB

)
(y) h2k(y)dy

≤ 2

|B|1+
α

d+2γk
k

‖Mb,α,k
(
χB

)‖LΨ (B)‖1‖LΨ̃ (B)

≤ C

|B|
α

d+2γk
k

Ψ −1(|B|−1
k )

Φ−1(|B|−1
k )

≤ C .

Thus b ∈ BMOk(R
d).

3. The third statement of the theorem follows from the first and second parts of the
theorem.

��
If we take Φ(t) = t p and Ψ (t) = tq in Theorem 8 we get the following corollary.

Corollary 5 Let 1 < p < ∞, 0 < α < (d +2γk)/p and 1
q = 1

p − α
d+2γk

. Then Mb,α,k

is bounded from L p,k(R
d) to Lq,k(R

d) if and only if b ∈ BMOk(R
d).

Corollary 6 Let 1 < p < ∞, 0 < α < (d+2γk)/p, 1q = 1
p − α

d+2γk
, b ∈ BMOk(R

d)

and b− ∈ L∞,k(R
d). Then [b, Mα,k] is bounded from L p,k(R

d) to Lq,k(R
d).
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